

Relatório de pesquisa sobre o procedimento de otimização de modelos no Activate

1 Introdução

Esse trabalho tem por objetivo apresentar o bloco de otimização *BobyqaOpt*, suas funcionalidades, parâmetros relevantes e possíveis usos do bloco em procedimentos de calibração de equipamentos. Para o estudo, um exemplo de calibração de parâmetros operacionais de um tanque foi implementado.

2 O bloco de Otimização

2.1 Desenho do bloco

Figura 1: Bloco de otimização BobygaOpt.

2.2 Descrição

O bloco de Otimização *BobyqaOpt* é um bloco de otimização que, dado um vetor de parâmetros *p0* e uma função de custo representativa do erro *cost*, é capaz de calcular um novo valor do vetor de parâmetros *p* para o qual espera-se, a princípio, que o erro seja menor. O bloco espera uma ativação externa para o início do processo de otimização e, no instante da ativação, o custo é computado e o processo se inicia.

O bloco de otimização *BobyqaOpt* se diferencia do seu similar, o bloco *Bobyqa*, pois enquanto o segundo gera uma saída que indica se o ótimo buscado foi atingido, o primeiro não tem essa entrada, e internamente é capaz de reiniciar a simulação caso o valor ótimo não tenha sido atingido no instante da ativação. Segundo [1], o bloco *BobyqaOpt* é, na verdade, um derivado do *Bobyqa*, de modo que sua lógica pode ser representada pelo diagrama da Figura 2 abaixo.

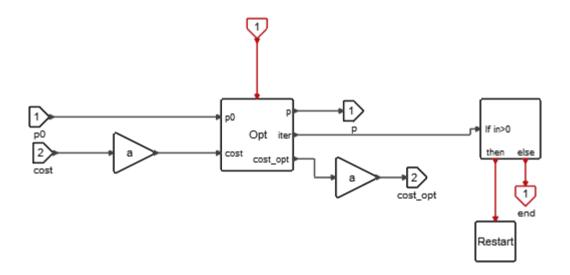


Figura 2: Lógica do bloco BobyqaOpt.

O algoritmo usado pelo bloco de otimização é o algoritmo *Bobyqa* implementado em modo de comunicação reversa [2]. Por dispensar o uso de derivadas o algoritmo permite ser chamado pela simulação, de modo diferente de outros otimizadores, que precisam estar em um nível acima da simulação e chamá-la, de modo a retirar suas métricas de erro. Para mais detalhes sobre o algoritmo, vide a referência [3].

2.3 Parâmetros do bloco

2.3.1 Máscara

Parâmetros		
Variables lower bounds (xL)	Mínimo valor das grandezas do vetor a	
	ser ajustado	
Variables upper bounds (xU)	Máximo valor das grandezas do vetor a	
	ser ajustado	
Initial value of the trust region (RhoBeg)	Tolerâncias para a região do ajuste	
Final value of the trust region (RhoEnd)	Tolerâncias para a região do ajuste	
Number of interpolation conditions (Npt)	Número de condições de interpolação.	
	Tem default em -1	
Maximum number of iterations (MaxIter)	Máximo número de vezes que o	
	otimizador pode reiniciar a simulação	
Compute max instead of min (minmax)	Booleano. Permite determinar pontos de	
	máximo ao invés de mínimo	

2.3.2 Entradas

Entradas		
p0	Valor inicial dos parâmetros do ajuste	
cost	Valor do custo, ou seja, da métrica de	
	erro utilizada	
Porta de ativação	Recebe o sinal de ativação que inicia o	
	processo de otimização	

2.3.3 Saídas

Saídas		
р	Valor atualizado dos parâmetros do	
	ajuste	
cost_opt	Valor do custo otimizado para o novo p	
End	Envia sinal de ativação quando o valor	
	ótimo é atingido	

3 Calibração de Tanque

O diagrama de blocos do exemplo do tanque desenvolvido pode ser visto na Figura 3:

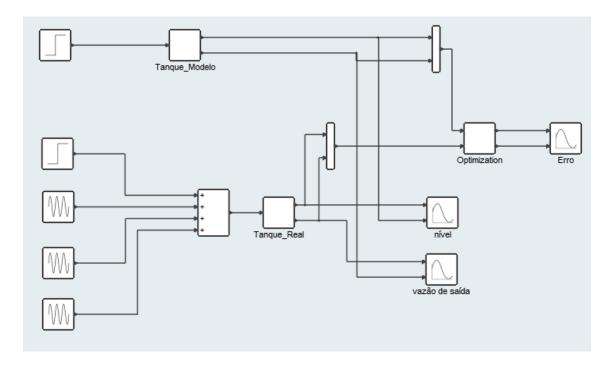


Figura 3: Diagrama do problema do tanque.

Nesse exemplo será calibrado o nível inicial de um tanque, tal como uma constante de perda de carga de uma válvula ligada em sua saída a partir de dados de operação simulados para um caso de vazão de entrada constante. O modelo do tanque é simulado pela equação simplificada abaixo:

$$\frac{dh}{dt} = \frac{\dot{m}_{in}}{\rho A} - \frac{A_f}{A} \sqrt{\frac{2\rho gh}{K}}$$
 (1)

Nessa equação, K representa a perda de carga da válvula, A a área da base do tanque, ρ a massa específica do fluido, A_f a área da seção transversal da tubulação da válvula de saída, \dot{m}_{in} é a vazão mássica de entrada e h é o nível.

A vazão mássica de saída é calculada por meio da equação abaixo:

$$\dot{m}_{out} = \rho A_f \sqrt{\frac{2\rho gh}{K}} \tag{2}$$

O conteúdo dos diagramas dos blocos que simulam o tanque real e o tanque modelado podem ser vistos, respectivamente, na Figura 4 e na Figura 5, ambas abaixo:

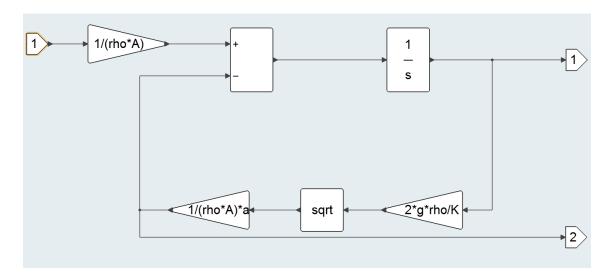


Figura 4: Conteúdo do bloco tanque real.

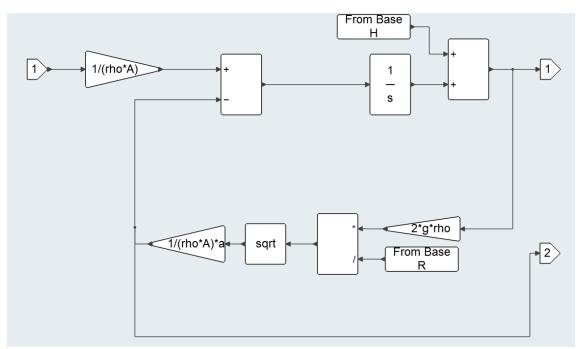


Figura 5: Conteúdo do bloco tanque modelo.

Vale notar que tanto para a entrada no bloco otimizador quanto para o uso no cálculo dos parâmetros, os valores das grandezas ajustadas R e H são inseridos usando um bloco *From Base*, e posteriormente atualizadas usando um bloco *To Base*. Esse arranjo é necessário para garantir, nos casos de reinício da simulação pelo otimizador, que os valores ajustados na simulação anterior serão mantidos para a próxima, refinando o ajuste a cada execução.

3.1 Simulação de dados de operação

Para simular os dados de operação reais de um tanque, uma entrada de vazão constante foi somada a três senos, de baixas amplitudes e altas frequências, de modo a simular o ruído de um sistema de medição, como pode ser visto na Figura 6. Os valores escolhidos para o nível inicial e para o K foram de 2,025 e 1, respectivamente.

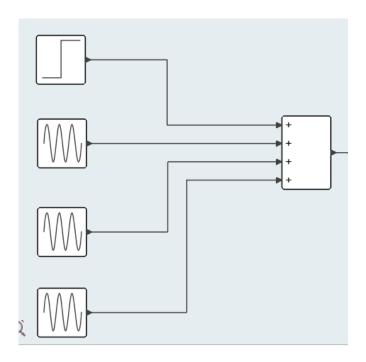


Figura 6: Sinal de entrada gerado com ruído.

3.2 Métricas de erro

Para o exemplo do tanque, apenas uma métrica de erro foi selecionada, sendo essa a máxima soma quadrática dos desvios relativos de altura e vazão de saída. O bloco implementado para o cálculo desse erro e exportação dos erros relativos pode ser visto abaixo, na Figura 7.

$$e = \max \left[\left(\frac{\Delta h}{h} \right)^2 + \left(\frac{\Delta \dot{m}}{\dot{m}} \right)^2 \right] \tag{3}$$

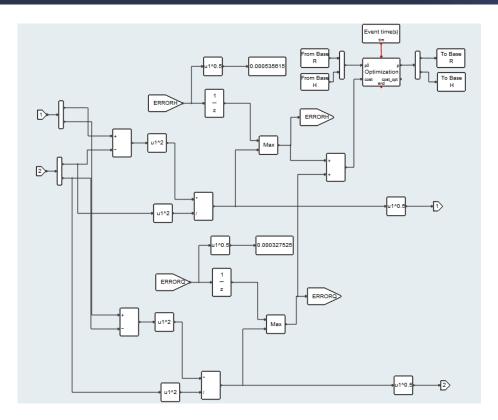


Figura 7: Diagrama do bloco Optimization.

3.3 Resultados

Os resultados obtidos para o ajuste do tanque com o otimizador podem ser vistos a seguir, na Figura 8 e na Figura 9 . Note que a curva vermelha representa os dados ajustados, enquanto a azul os operacionais simulados.

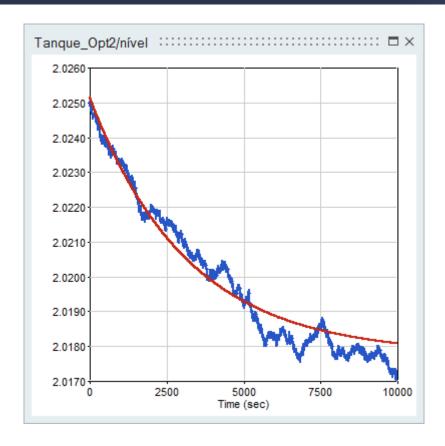


Figura 8: Nível do tanque em função do tempo.

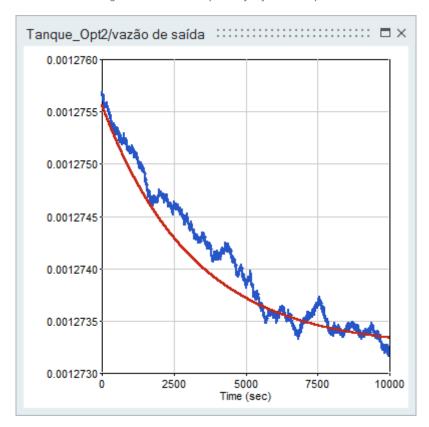


Figura 9: Vazão de saída em função do tempo.

Já os erros relativos as grandezas simuladas foram extraídos e também podem ser vistos na Figura 10 abaixo.

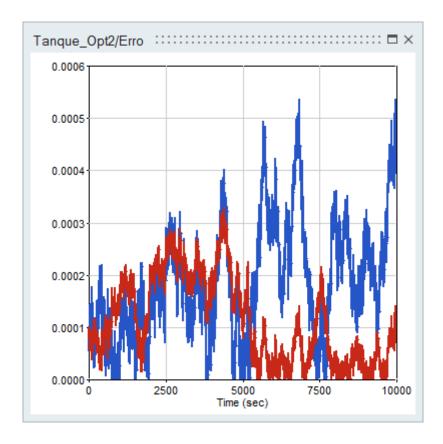


Figura 10: Erro relativo da vazão (vermelho) e do nível (azul) em função do tempo.

Como podemos ver, os ajustes foram satisfatórios com erros relativos sempre abaixo de 1%, mesmo com o ruído introduzido. A comparação das condições ajustadas pode ser vista abaixo:

Tabela 1: Comparação entre os valores obtidos pelo ajuste e os impostos.

Grandeza	Valor imposto	Valor ajustado	Desvio (%)
Nível inicial (m)	2,025000	2,025417	0,02
Constante K	1,00000	1,00025	0,02

Como podemos ver, os erros obtidos foram inferiores a 0,1% para as grandezas ajustadas. Para fins de engenharia, esses erros são aceitáveis, de modo que o resultado foi considerado satisfatório.

4 Conclusão

Esse trabalho apresentou uma ferramenta poderosa e versátil disponível dentro do SolidThinking Activate: o bloco de otimização BobyqaOpt. A versatilidade desse bloco, seu uso intuitivo e a possibilidade de integração deste com os demais blocos nativos do Activate o tornam uma ferramenta poderosa, capaz de permitir a comparação de modelos com dados experimentais de forma simples e prática.

Duas partes no processo de otimização são as mais essenciais: a seleção do tempo de ativação do otimizador e da métrica de erro. Como em todo o processo de otimização, a qualidade dos resultados está submetida a esses parâmetros, sendo a ativação do otimizador um controle do domínio considerado para a otimização (em geral, de zero até o instante da ativação) e a métrica de erro um controle que permite diferentes ponderações de erro. Para o caso acima trabalhado, a métrica de erro quadrático acumulado e o uso do otimizador com ativação ao fim da simulação se mostraram adequadas, e o resultado foi satisfatório.

5 Referências

- [1] SolidThinking, Ajuda do programa SolidThinking Activate Bloco de Otimização BobyqaOpt, 2017.
- [2] SolidThinking, Activate Extended Definitions for Activate 2017.3, 2017.
- [3] M. Powell, *The BOBYQA algorithm for bound constrained optimization without derivatives*, 2009.